NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Design and evaluation of a robust dynamic neurocontroller for a multivariable aircraft control problemThe design of a dynamic neurocontroller with good robustness properties is presented for a multivariable aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and control input commands and rates. The neurocontroller exhibits good robustness through stability margins in phase and vehicle output gains. By maintaining performance and stability in the presence of sensor failures in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight control design.
Document ID
19920011344
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Troudet, T.
(Sverdrup Technology, Inc., Brook Park OH., United States)
Garg, S.
(NASA Lewis Research Center Cleveland, OH, United States)
Merrill, W.
(NASA Lewis Research Center Cleveland, OH, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1992
Subject Category
Aircraft Stability And Control
Report/Patent Number
E-6905
NASA-TM-105579
NAS 1.15:105579
Report Number: E-6905
Report Number: NASA-TM-105579
Report Number: NAS 1.15:105579
Meeting Information
Meeting: International Joint Conference on Neural Networks
Location: Baltimore, MD
Country: United States
Start Date: June 7, 1992
Accession Number
92N20586
Funding Number(s)
PROJECT: RTOP 505-62-50
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available