NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Enhanced magnetic field production during oblique hypervelocity impactsThe natural remanent magnetization of the lunar surface as displayed in returned lunar samples and the data returned by the Apollo subsatellite magnetometer has an unexpectedly high magnitude and exhibits spatial variation at all scales. The origin of the lunar remanent fields may be due to crustal remanence of a core dynamo field occurring early in lunar history prior to extensive modification by impact or remanence of transient fields, particularly associated with impacts, occurring on a local scale throughout lunar history. The presence of an early core dynamo field would have strong consequences for the formation and early evolution of the Moon, yet to deconvolve the role that an internally generated core dynamo field may have had, it is necessary to understand how the magnetic state of the lunar surface has developed through time. Impact-induced magnetism may be an important component of the present magnetic state of the lunar surface. New theoretical considerations suggest that transient magnetic fields within plasma produced by hypervelocity meteorite impacts may have greater significance at larger scales than previously thought.
Document ID
19930000941
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Crawford, D. A.
(Brown Univ. Providence, RI, United States)
Schultz, P. H.
(Brown Univ. Providence, RI, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1992
Publication Information
Publication: Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution
Subject Category
Geophysics
Accession Number
93N10129
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available