NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Impactites from Popigai CraterImpactites (tagamites and suevites) from Popigai impact crater, whose diameter is about 100 km, are distributed over an area of 5000 sq km. The continuous sheet of suevite overlies the allogenic polymict breccia and partly authogenic breccia, and may also be observed in lenses or irregular bodies. The thickness of suevites in the central part of the crater is more than 100 m. Suevites may be distinguished by content of vitroclasts, lithoclasts, and crystalloclasts, by their dimensions, and by type of cementation, which reflects the facial settings of ejection of crushed and molten material, its sedimentation and lithification. Tagamites (impact melt rocks) are distributed on the surface predominantly in the western sector of the crater. The most characteristic are thick sheetlike bodies overlying the allogenic breccia and occurring in suevites where minor irregular bodies are widespread. The maximal thickness of separate tagamite sheets is up to 600 m. Tagamites, whose matrix is crystallized to a different degree, include fragments of minerals and gneiss blocks, among them shocked and thermally metamorphosed ones. Tagamite sheets have a complex inner structure; separate horizontal zones distinguish in crystallinity and fragment saturation. Differentiation in the impact melt in situ was not observed. The average chemical compositions of tagamites and suevites are similar, and correspond to the composition of biotite-garnet gneisses of the basement. According to the content of supplied Ir, Ni, and other siderophiles, impact melt was contaminated by 5 percent cosmic matter of collided body, probably ordinary chondrite. The total volume of remaining products of chilled impact melt is about 1750 cu km. Half this amount is represented by tagamite bodies. Though impact melt was in general well homogenized, the trend analysis showed that the concentric zonation is distribution of SiO2, MgO, and Na2O and the bandlike distribution of FeO and Al2O3 content testifies to a certain inheritance and heterogeneity in country rock composition laterally and vertically in the melting zone.
Document ID
19930000976
Document Type
Conference Paper
Authors
Masaitis, V. L.
(Karpinsky Geological Research Inst. Saint Petersburg, Ussr)
Date Acquired
September 6, 2013
Publication Date
January 1, 1992
Publication Information
Publication: Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution
Subject Category
Astrophysics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

NameType 19930000976.pdf STI

Related Records

IDRelationTitle19930000924Analytic PrimaryInternational Conference on Large Meteorite Impacts and Planetary Evolution
No Preview Available