NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Monte Carlo computer simulations of Venus equilibrium and global resurfacing modelsTwo models have been proposed for the resurfacing history of Venus: (1) equilibrium resurfacing and (2) global resurfacing. The equilibrium model consists of two cases: in case 1, areas less than or equal to 0.03 percent of the planet are spatially randomly resurfaced at intervals of less than or greater than 150,000 yr to produce the observed spatially random distribution of impact craters and average surface age of about 500 m.y.; and in case 2, areas greater than or equal to 10 percent of the planet are resurfaced at intervals of greater than or equal to 50 m.y. The global resurfacing model proposes that the entire planet was resurfaced about 500 m.y. ago, destroying the preexisting crater population and followed by significantly reduced volcanism and tectonism. The present crater population has accumulated since then with only 4 percent of the observed craters having been embayed by more recent lavas. To test the equilibrium resurfacing model we have run several Monte Carlo computer simulations for the two proposed cases. It is shown that the equilibrium resurfacing model is not a valid model for an explanation of the observed crater population characteristics or Venus' resurfacing history. The global resurfacing model is the most likely explanation for the characteristics of Venus' cratering record. The amount of resurfacing since that event, some 500 m.y. ago, can be estimated by a different type of Monte Carolo simulation. To date, our initial simulation has only considered the easiest case to implement. In this case, the volcanic events are randomly distributed across the entire planet and, therefore, contrary to observation, the flooded craters are also randomly distributed across the planet.
Document ID
19930005123
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Dawson, D. D.
(Arizona Univ. Tucson, AZ, United States)
Strom, R. G.
(Arizona Univ. Tucson, AZ, United States)
Schaber, G. G.
(Geological Survey Flagstaff, AZ., United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1992
Publication Information
Publication: Lunar and Planetary Inst., Papers Presented to the International Colloquium on Venus
Subject Category
Lunar And Planetary Exploration
Accession Number
93N14311
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available