NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Groundbased near-IR observations of the surface of VenusWe present images of the nightside of Venus taken in the near-infrared windows at 1.0, 1.1, 1.18, 1.28, 1.31, and 2.3 microns with the new infrared camera/spectrometer IRIS on the Anglo-Australian Telescope. These data were taken in spectral-mapping mode. This technique involves scanning the telescope perpendicular to the slit, while collecting spectra at successive slit positions across the planet. We produce data cubes with one spectral and two spatial dimensions. Images can be extracted over any wavelength regions. Each image has square pixels of 0.8 inch resolution. We reduced the scattered light from the sunlit crescent in images extracted from each window by subtracting images taken on either side of the window, where the Venus atmosphere is opaque. Unlike the short wavelength windows, which reveal thermal contrasts that originate primarily from the surface and deep atmosphere, the emission in the 2.3 microns window is produced at much higher altitudes (30-40 km). Emission contrasts seen near 2.3 microns are associated with horizontal variations in the cloud optical depths, and have rotation periods of about six days. We detect large contrasts in infrared emission (20-40 percent) across the disc of Venus in the 1.0-, 1.1-, 1.18-, 1.28-, and 1.31-micron images. Contrasts at these wavelengths may be due to a combination of variations in the optical depths of the overlying sulfuric acid clouds and differences in surface emission. Comparison with the 2.3-micron images show that the patterns seen in the 1.28- and 1.31-micron windows are consistent with cloud optical depth variations alone and require no contribution from the surface. However, images at 1.0, 1.1, and 1.8 microns from July 1991 show a dark feature having a contrast that increases with decreasing wavelength. This behavior is contrary to that expected of cloud absorption. Images taken on three successive days in October show another dark feature that is stationary with respect to the surface. These regions of lower emission correspond closely to the high-altitude surface regions of Beta Regio and Aphrodite Terra. The images can potentially reveal the near-infrared emissiveity of the surface of Venus, thereby complementing Magellan radar reflectivity and ground based radio emissivity measurements. The contrast ratio between highlands and plains is much smaller than would be expected for blackbody radiation from the surface along. Unlike at radio wavelengths, where the atmosphere is essentially transparent, at near-infrared wavelengths the atmosphere emits, absorbs, and scatters radiation, and can modify the observed topographically induced contrasts. The additional radiation from the atmosphere reduces the contrast, and further modification would be expected if terrain at different altitudes has different emissivities. A fit to our data therefore requires, and may constrain, a model of the lowest scale height of the atmosphere.
Document ID
19930005158
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Meadows, V. S.
(Sydney Univ. Australia)
Crisp, D.
(Jet Propulsion Lab. California Inst. of Tech., Pasadena., United States)
Allen, D. A.
(Anglo-Australian Observatory Sydney., United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1992
Publication Information
Publication: Lunar and Planetary Inst., Papers Presented to the International Colloquium on Venus
Subject Category
Lunar And Planetary Exploration
Accession Number
93N14346
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available