NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Energetics and structural properties of twist grain boundaries in CuStructural and energetics properties of atoms near a grain boundary are of great importance from theoretical and experimental standpoints. From various experimental work it is concluded that diffusion at low temperatures at polycrystalline materials take place near grain boundary. Experimental and theoretical results also indicate changes of up to 70 percent in physical properties near a grain boundary. The Embedded Atom Method (EAM) calculations on structural properties of Au twist grain boundaries are in quite good agreement with their experimental counterparts. The EAM is believed to predict reliable values for the single vacancy formation energy as well as migration energy. However, it is not clear whether the EAM functions which are fitted to the bulk properties of a perfect crystalline solid can produce reliable results on grain boundaries. One of the objectives of this work is to construct the EAM functions for Cu and use them in conjunction with the molecular static simulation to study structures and energetics of atoms near twist grain boundaries in Cu. This provides tests of the EAM functions near a grain boundary. In particular, we determine structure, single vacancy formation energy, migration energy, single vacancy activation energy, and interlayer spacing as a function of distance from grain boundary. Our results are compared with the available experimental and theoretical results from grain boundaries and bulk.
Document ID
19930008115
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Karimi, Majid
(Indiana Univ. of Pennsylvania Indiana, PA, United States)
Date Acquired
September 6, 2013
Publication Date
December 1, 1992
Publication Information
Publication: Alabama Univ., 1992 NASA(ASEE Summer Faculty Fellowship Program
Subject Category
Metallic Materials
Accession Number
93N17304
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available