NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Design of a welded joint for robotic, on-orbit assembly of space trussesIn the future, some spacecraft will be so large that they must be assembled on-orbit. These spacecraft will be used for such tasks as manned missions to Mars or used as orbiting platforms for monitoring the Earth or observing the universe. Some large spacecraft will probably consist of planar truss structures to which will be attached special purpose, self-contained modules. The modules will most likely be taken to orbit fully outfitted and ready for use in heavy-lift launch vehicles. The truss members will also similarly be taken to orbit, but most unassembled. The truss structures will need to be assembled robotically because of the high costs and risks of extra-vehicular activities. Some missions will involve very large loads. To date, very few structures of any kind have been constructed in space. Two relatively simple trusses were assembled in the Space Shuttle bay in late 1985. Here the development of a design of a welded joint for on-orbit, robotic truss assembly is described. Mechanical joints for this application have been considered previously. Welded joints have the advantage of allowing the truss members to carry fluids for active cooling or other purposes. In addition, welded joints can be made more efficient structurally than mechanical joints. Also, welded joints require little maintenance (will not shake loose), and have no slop which would cause the structure to shudder under load reversal. The disadvantages of welded joints are that a more sophisticated assembly robot is required, weld flaws may be difficult to detect on-orbit, the welding process is hazardous, and welding introduces contamination to the environment. In addition, welded joints provide less structural damping than do mechanical joints. Welding on-orbit was first investigated aboard a Soyuz-6 mission in 1969 and then during a Skylab electron beam welding experiment in 1973. A hand held electron beam welding apparatus is currently being prepared for use on the MIR space station. Presently, Marshall Space Flight Center is evaluating processes appropriate for on-orbit welding. A low gravity environment has been found to have very minor effects on the welding processes appropriate for this application. This is based on tests run on-orbit as well as low gravity environments achieved by flying aircraft in parabolic trajectories. It appears that a modified form of gas tungsten arc welding (GTAW) will be most appropriate for welding together structures on-oribt. The process has been modified to work in a vacuum by providing gas to the arc zone by means of a hollow tungsten electrode with special shielding. A commercial tube welding head has been successfully modified for use on-orbit with a gas leakage rate of approximately 2.5 liters/min. To develop as realistic a joint as possible, a specific truss structure was selected on which to base the design. The structure considered was based on the 120 foot diameter aerobrake tetrahedral truss structure. The truss members were assumed to consist of graphite/epoxy tubes. Also, it was assumed that the nodes were constructed of 2219-T87 aluminum alloy. The magnitude of the member load assumed for design purposes was 100 kips.
Document ID
19930008137
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Rule, William K.
(Alabama Univ. Tuscaloosa, AL, United States)
Date Acquired
September 6, 2013
Publication Date
December 1, 1992
Publication Information
Publication: 1992 NASA(ASEE Summer Faculty Fellowship Program
Subject Category
Mechanical Engineering
Accession Number
93N17326
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available