NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Nature of fluid flows in differentially heated cylindrical container filled with a stratified solutionSemiconductor crystals such as Hg(1-x)Cd(x)Te grown by unidirectional solidification Bridgmann method have shown compositional segregations in both the axial and radial directions. Due to the wide separation between the liquidus and the solidus of its pseudobinary phase diagram, there is a diffusion layer of higher HgTe content built up in the melt near the melt-solid interface which gives a solute concentration gradient in the axial direction. Because of the higher thermal conductivity in the melt than that in the crystal there is a thermal leakage through the fused silica crucible wall near the melt-solid interface. This gives a thermal gradient in the radial direction. Hart (1971), Thorpe, Hutt and Soulsby (1969) have shown that under such condition a fluid will become convectively unstable as a result of different diffusivities of temperature and solute. It is quite important to understand the effects of this thermosolute convection on the compositional segregation in the unidirectionally solidified crystals. To reach this goal, we start with a simplified problem. We study the nature of fluid flows of a stratified solution in a cylindrical container with a radial temperature gradient. The cylindrical container wall is considered to be maintained at a higher temperature than that at the center of the solution and the solution in the lower gravitational direction has higher solute concentration which decrease linearly to a lower concentration and then remain constant to the top of the solution. The sample solution is taken to be salt water.
Document ID
19930008145
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Wang, Jai-Ching
(Alabama A & M Univ. Huntsville, AL, United States)
Date Acquired
September 6, 2013
Publication Date
December 1, 1992
Publication Information
Publication: Alabama Univ., 1992 NASA(ASEE Summer Faculty Fellowship Program
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
93N17334
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available