NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Analysis of film cooling in rocket nozzlesComputational Fluid Dynamics (CFD) programs are customarily used to compute details of a flow field, such as velocity fields or species concentrations. Generally they are not used to determine the resulting conditions at a solid boundary such as wall shear stress or heat flux. However, determination of this information should be within the capability of a CFD code, as the code supposedly contains appropriate models for these wall conditions. Before such predictions from CFD analyses can be accepted, the credibility of the CFD codes upon which they are based must be established. This report details the progress made in constructing a CFD model to predict the heat transfer to the wall in a film cooled rocket nozzle. Specifically, the objective of this work is to use the NASA code FDNS to predict the heat transfer which will occur during the upcoming hot-firing of the Pratt & Whitney 40K subscale nozzle (1Q93). Toward this end, an M = 3 wall jet is considered, and the resulting heat transfer to the wall is computed. The values are compared against experimental data available in Reference 1. Also, FDNS's ability to compute heat flux in a reacting flow will be determined by comparing the code's predictions against calorimeter data from the hot firing of a 40K combustor. The process of modeling the flow of combusting gases through the Pratt & Whitney 40K subscale combustor and nozzle is outlined. What follows in this report is a brief description of the FDNS code, with special emphasis on how it handles solid wall boundary conditions. The test cases and some FDNS solution are presented next, along with comparison to experimental data. The process of modeling the flow through a chamber and a nozzle using the FDNS code will also be outlined.
Document ID
19930008150
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Woodbury, Keith A.
(Alabama Univ. Huntsville, AL, United States)
Date Acquired
September 6, 2013
Publication Date
December 1, 1992
Publication Information
Publication: Alabama Univ., 1992 NASA(ASEE Summer Faculty Fellowship Program
Subject Category
Spacecraft Propulsion And Power
Accession Number
93N17339
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available