NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Forward-scatter radiant mappingForward-scatter systems have been much neglected for the study of meteors and meteor streams. A great deal of this neglect stems from the complicated geometry which has made the interpretation of results difficult in the past. This no longer presents a problem because of the computer power now available. There are practical advantages in using forward-scatter in that low-power transmitters are much easier to handle than the high-power ones used in pulsed back-scatter radars. The data reduction of the CW signals is also significantly simpler. Because the forward-scatter reflection geometry increases the duration of the echoes relative to the back-scatter case, the problem of the underdense ceiling is partially alleviated. We have built a 'short hop' forward-scatter system between Ottawa and London (Ont) for which the transmitter and receiver are separated by about 500 km. With it, we are able to measure unambiguously the directions of arrival of the echoes using a 5-antenna interferometer. Morton and Jones (1982, MN, 198, 737) have shown how the echo direction distribution can be deconvolved to yield the meteor radiant distribution for back-scatter data. We have extended the technique to the forward-scatter case and present some preliminary meteor radiant distribution maps.
Document ID
19930009989
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Jones, James
(University of Western Ontario London Ontario, Canada)
Webster, A. R.
(University of Western Ontario London Ontario, Canada)
Date Acquired
September 6, 2013
Publication Date
January 1, 1992
Publication Information
Publication: Lunar and Planetary Inst., Asteroids, Comets, Meteors 1991
Subject Category
Astronomy
Accession Number
93N19178
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available