NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Cartography of asteroids and comet nuclei from low resolution dataHigh resolution images of non-spherical objects, such as Viking images of Phobos and the anticipated Galileo images of Gaspra, lend themselves to conventional planetary cartographic procedures: control network analysis, stereophotogrammetry, image mosaicking in 2D or 3D, and airbrush mapping. There remains the problem of a suitable map projection for bodies which are extremely elongated or irregular in shape. Many bodies will soon be seen at lower resolution (5-30 pixels across the disk) in images from speckle interferometry, the Hubble Space Telescope, ground-based radar, distinct spacecraft encounters, and closer images degraded by smear. Different data with similar effective resolutions are available from stellar occultations, radar or lightcurve convex hulls, lightcurve modeling of albedo variations, and cometary jet modeling. With such low resolution, conventional methods of shape determination will be less useful or will fail altogether, leaving limb and terminator topography as the principal sources of topographic information. A method for shape determination based on limb and terminator topography was developed. It has been applied to the nucleus of Comet Halley and the jovian satellite Amalthea. The Amalthea results are described to give an example of the cartographic possibilities and problems of anticipated data sets.
Document ID
19930010060
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Stooke, Philip J.
(University of Western Ontario London Ontario, Canada)
Date Acquired
September 6, 2013
Publication Date
January 1, 1992
Publication Information
Publication: Lunar and Planetary Inst., Asteroids, Comets, Meteors 1991
Subject Category
Astrophysics
Accession Number
93N19249
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available