NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Beneficiation of ilmenite from lumar analogThe results reported were obtained on a meteoric eucrite sample called Millbillillie Sample no. 173. Optical microscopy studies of the sample showed it to consist of ilmenite, troilite, and transparent gangue. The transparent gangue consisted of feldspar (anorthite), pyroxenes, olivines, and opaques. Troilite was present in minor quantities. Screen assay analyses of the 30, 100, 200, and 400 US mesh screen fractions showed that minor concentration of titanium occurred in the 200 x 400 and -400 mesh screen fractions. Scanning electron microscopy (SEM) studies of the bulk sample showed the presence of a variety of ilmenite grains, ranging from 50 microns down to less than 1 micron without any evidence of liberation. Electron Diffraction Scans (EDS) confirmed the ratio of Fe to Ti in the ilmenite grains. Dry magnetic separation in a Frantz Isodynamic Separator was found to be effective only at sizes finer than 150 microns (100 US mesh) and more so at 200 mesh (74 microns). In each case, dedusting of the sample to remove -400 mesh (-0.037 microns) fines was required. Liberation size was determined to be 200 mesh and finer. The highest grade concentrate assaying 3.45 percent Ti was produced by magnetic separation of the -200 + 400 mesh screen fraction assaying 0.44 Ti (from a -30 mesh sample) at a current setting of 0.35 AMP. This concentrate contained 21.2 percent of the Ti values in the screen fraction with 2.72 weight percent of feed to test. The results can be projected to a sample stage ground to -200 mesh. Magnetic separation of the 200 + 400 mesh (-0.074 + 0.037 microns) should produce a concentrate accounting for 1.41 weight percent of the feed. This concentrate will analyze 3.45 percent Ti and contain 10.3 percent of the Ti values in the feed. By changing the Frantz Magnetic Separator settings, a lower grade concentrate analyzing 0.98 percent Ti can be produced at an increased recovery of 25.4 percent. The concentrate weight will be 11.7 percent of the feed. It must be emphasized that improved grades and recoveries can be obtained with the -400 mesh fines. However, beneficiation of these extremely fine materials is not possible in a practical process scheme.
Document ID
19930017492
Document Type
Other
Authors
Ramadorai, G. (Arizona Univ. Tucson, AZ, United States)
Dean, R. (Arizona Univ. Tucson, AZ, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1992
Publication Information
Publication: NASA Space Engineering Research Center for Utilization of Local Planetary Resources
Subject Category
INORGANIC AND PHYSICAL CHEMISTRY
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

NameType 19930017492.pdf STI

Related Records

IDRelationTitle19930017485Analytic PrimaryNASA Space Engineering Research Center for utilization of local planetary resources