NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Abundance of He-3 and other solar-wind-derived volatiles in lunar soilVolatiles implanted into the lunar regolith by the solar wind are potentially important lunar resources. Wittenberg et al. (1986) have proposed that lunar He-3 could be used as a fuel for terrestrial nuclear fusion reactors. They argue that a fusion scheme involving D and He-3 would be cleaner and more efficient than currently-proposed schemes involving D and T. However, since the terrestrial inventory of He-3 is so small, they suggest that the lunar regolith, with concentrations of the order of parts per billion (by mass) would be an economical source of He-3. Solar-wind implantation is also the primary source of H, C, and N in lunar soil. These elements could also be important, particularly for life support and for propellant production. In a SERC study of the feasibility of obtaining the necessary amount of He-3, Swindle et al. (1990) concluded that the available amount is sufficient for early reactors, at least, but that the mining problems, while not necessarily insurmountable, are prodigious. The volatiles H, C, and N, on the other hand, come in parts per million level abundances. The differences in abundances mean that (1) a comparable amount of H, C, and/or N could be extracted with orders of magnitude smaller operations than required for He-3, and (2) if He-3 extraction ever becomes important, huge quantities of H, C, and N will be produced as by-products.
Document ID
19930017503
Document Type
Other
Authors
Swindle, Timothy D. (Arizona Univ. Tucson, AZ, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1992
Publication Information
Publication: NASA Space Engineering Research Center for Utilization of Local Planetary Resources
Subject Category
LUNAR AND PLANETARY EXPLORATION
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

NameType 19930017503.pdf STI

Related Records

IDRelationTitle19930017485Analytic PrimaryNASA Space Engineering Research Center for utilization of local planetary resources