NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Electrical power integration for lunar operationsElectrical power for future lunar operations is expected to range from a few kilowatts for an early human outpost to many megawatts for industrial operations in the 21st century. All electrical power must be imported as chemical, solar, nuclear, or directed energy. The slow rotation of the Moon and consequent long lunar night impose severe mass penalties on solar systems needing night delivery from storage. The cost of power depends on the cost of the power systems the cost of its transportation to the Moon, operating cost, and, of course, the life of the power system. The economic feasibility of some proposed lunar ventures depends in part on the cost of power. This paper explores power integration issues, costs, and affordability in the context of the following representative lunar ventures: (1) early human outpost (10 kWe); (2) early permanent lunar base, including experimental ISMU activities (100 kWe); (3) lunar oxygen production serving an evolved lunar base (500 kWe); (4) lunar base production of specialized high-value products for use on Earth (5 kWe); and (5) lunar mining and production of helium-3 (500 kWe). The schema of the paper is to project likely costs of power alternatives (including integration factors) in these power ranges, to select the most economic, to determine power cost contribution to the product or activities, to estimate whether the power cost is economically acceptable, and, finally, to offer suggestions for reaching acceptability where cost problems exist.
Document ID
19930018777
Document Type
Conference Paper
Authors
Woodcock, Gordon
(Boeing Defense and Space Group Huntsville, AL, United States)
Date Acquired
September 6, 2013
Publication Date
February 1, 1992
Publication Information
Publication: Arizona Univ., Proceedings of the Lunar Materials Technology Symposium
Subject Category
Spacecraft Propulsion And Power
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

NameType 19930018777.pdf STI

Related Records

IDRelationTitle19930018767Analytic PrimaryProceedings of the Lunar Materials Technology Symposium