NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Intelligent robots for planetary exploration and constructionRobots capable of practical applications in planetary exploration and construction will require realtime sensory-interactive goal-directed control systems. A reference model architecture based on the NIST Real-time Control System (RCS) for real-time intelligent control systems is suggested. RCS partitions the control problem into four basic elements: behavior generation (or task decomposition), world modeling, sensory processing, and value judgment. It clusters these elements into computational nodes that have responsibility for specific subsystems, and arranges these nodes in hierarchical layers such that each layer has characteristic functionality and timing. Planetary exploration robots should have mobility systems that can safely maneuver over rough surfaces at high speeds. Walking machines and wheeled vehicles with dynamic suspensions are candidates. The technology of sensing and sensory processing has progressed to the point where real-time autonomous path planning and obstacle avoidance behavior is feasible. Map-based navigation systems will support long-range mobility goals and plans. Planetary construction robots must have high strength-to-weight ratios for lifting and positioning tools and materials in six degrees-of-freedom over large working volumes. A new generation of cable-suspended Stewart platform devices and inflatable structures are suggested for lifting and positioning materials and structures, as well as for excavation, grading, and manipulating a variety of tools and construction machinery.
Document ID
19930018791
Document Type
Conference Paper
Authors
Albus, James S.
(National Inst. of Standards and Technology Gaithersburg, MD, United States)
Date Acquired
September 6, 2013
Publication Date
February 1, 1992
Publication Information
Publication: Arizona Univ., Proceedings of the Lunar Materials Technology Symposium
Subject Category
Mechanical Engineering
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

NameType 19930018791.pdf STI

Related Records

IDRelationTitle19930018767Analytic PrimaryProceedings of the Lunar Materials Technology Symposium