NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Laer-induced Breakdown Spectroscopy Instrument for Element Analysis of Planetary SurfacesOne of the most fundamental pieces of information about any planetary body is the elemental and mineralogical composition of its surface materials. We are developing an instrument to obtain such data at ranges of up to several hundreds of meters using the technique of Laser-Induced Breakdown Spectroscopy (LIBS). We envision our instrument being used from a spacecraft in close rendezvous with small bodies such as comets and asteroids, or deployed on surface-rover vehicles on large bodies such as Mars and the Moon. The elemental analysis is based on atomic emission spectroscopy of a laser-induced plasma or spark. A pulsed, diode pumped Nd:YAG laser of several hundred millijoules optical energy is used to vaporize and electronically excite the constituent elements of a rock surface remotely located from the laser. Light emitted from the excited plasma is collected and introduced to the entrance slit of a small grating spectrometer. The spectrally dispersed spark light is detected with either a linear photo diode array or area CCD array. When the latter detector is used, the optical and spectrometer components of the LIBS instrument can also be used in a passive imaging mode to collect and integrate reflected sunlight from the same rock surface. Absorption spectral analysis of this reflected light gives mineralogical information that provides a remote geochemical characterization of the rock surface. We performed laboratory calibrations in air and in vacuum on standard rock powders to quantify the LIBS analysis. We performed preliminary field tests using commercially available components to demonstrate remote LIBS analysis of terrestrial rock surfaces at ranges of over 25 m, and we have demonstrated compatibility with a six-wheeled Russian robotic rover vehicle. Based on these results, we believe that all major and most minor elements expected on planetary surfaces can be measured with absolute accuracy of 10-15 percent and much higher relative accuracy. We have performed preliminary systems analysis of a LIBS instrument to evaluate probable mass and power requirements; results of this analysis are summarized.
Document ID
19930019580
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Blacic, J.
(Los Alamos National Lab. NM, United States)
Pettit, D.
(Los Alamos National Lab. NM, United States)
Cremers, D.
(Los Alamos National Lab. NM, United States)
Roessler, N.
(McDonnell-Douglas Electronics Co. Saint Louis, MO., United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: Lunar and Planetary Inst., Workshop on Advanced Technologies for Planetary Instruments, Part 1
Subject Category
Instrumentation And Photography
Accession Number
93N28769
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available