NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Helicopter approach capability using the differential global positioning systemThe results of flight tests to determine the feasibility of using the Global Positioning System (GPS) in the differential mode (DGPS) to provide high accuracy, precision navigation, and guidance for helicopter approaches to landing are presented. The airborne DGPS receiver and associated equipment is installed in a NASA UH-60 Black Hawk helicopter. The ground-based DGPS reference receiver is located at a surveyed test site and is equipped with a real-time VHF data link to transmit correction information to the airborne DGPS receiver. The corrected airborne DGPS information, together with the preset approach geometry, is used to calculate guidance commands which are sent to the aircraft's approach guidance instruments. The use of DGPS derived guidance for helicopter approaches to landing is evaluated by comparing the DGPS data with the laser tracker truth data. Both standard (3 deg) and steep (6 deg and 9 deg) glideslope straight-in approaches were flown. DGPS positioning accuracy based on a time history analysis of the entire approach was 0.2 m (mean) +/- 1.8 m (2 sigma) laterally and -2.0 m (mean) +/- 3.5 m (2 sigma) vertically for 3 deg glideslope approaches, -0.1 m (mean) +/- 1.5 m (2 sigma) laterally and -1.1 m (mean) +/- 3.5 m (2 sigma) vertically for 6 deg glideslope approaches and 0.2 m (mean) +/- 1.3 m (2 sigma) laterally and -1.0 m (mean) +/- 2.8 m (2 sigma) vertically for 9 deg glideslope approaches. DGPS positioning accuracy at the 200 ft decision height (DH) on a standard 3 deg slideslope approach was 0.3 m (mean) +/- 1.5 m (2 sigma) laterally and -2.3 m (mean) +/- 1.6 m (2 sigma) vertically. These errors indicate that the helicopter position based on DGPS guidance satisfies the International Civil Aviation Organization (ICAO) Category 1 (CAT 1) lateral and vertical navigational accuracy requirements.
Document ID
19930019747
Acquisition Source
Legacy CDMS
Document Type
Thesis/Dissertation
Authors
Kaufmann, David N.
(California Polytechnic State Univ. San Luis Obispo, CA, United States)
Date Acquired
September 6, 2013
Publication Date
June 1, 1993
Subject Category
Aircraft Communications And Navigation
Report/Patent Number
NASA-CR-193183
NAS 1.26:193183
Report Number: NASA-CR-193183
Report Number: NAS 1.26:193183
Accession Number
93N28936
Funding Number(s)
CONTRACT_GRANT: NCC2-775
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available