NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A neuro-fuzzy architecture for real-time applicationsNeural networks and fuzzy expert systems perform the same task of functional mapping using entirely different approaches. Each approach has certain unique features. The ability to learn specific input-output mappings from large input/output data possibly corrupted by noise and the ability to adapt or continue learning are some important features of neural networks. Fuzzy expert systems are known for their ability to deal with fuzzy information and incomplete/imprecise data in a structured, logical way. Since both of these techniques implement the same task (that of functional mapping--we regard 'inferencing' as one specific category under this class), a fusion of the two concepts that retains their unique features while overcoming their individual drawbacks will have excellent applications in the real world. In this paper, we arrive at a new architecture by fusing the two concepts. The architecture has the trainability/adaptibility (based on input/output observations) property of the neural networks and the architectural features that are unique to fuzzy expert systems. It also does not require specific information such as fuzzy rules, defuzzification procedure used, etc., though any such information can be integrated into the architecture. We show that this architecture can provide better performance than is possible from a single two or three layer feedforward neural network. Further, we show that this new architecture can be used as an efficient vehicle for hardware implementation of complex fuzzy expert systems for real-time applications. A numerical example is provided to show the potential of this approach.
Document ID
19930020340
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Ramamoorthy, P. A.
(Cincinnati Univ. OH, United States)
Huang, Song
(Cincinnati Univ. OH, United States)
Date Acquired
September 6, 2013
Publication Date
December 1, 1992
Publication Information
Publication: NASA. Johnson Space Center, North American Fuzzy Logic Processing Society (NAFIPS 1992), Volume 1
Subject Category
Theoretical Mathematics
Accession Number
93N29529
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available