NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Selenia: A habitability study for the development of a third generation lunar baseWhen Apollo astronauts landed on the Moon, the first generation of lunar bases was established. They consisted essentially of a lunar module and related hardware capable of housing two astronauts for not more than several days. Second generation lunar bases are being developed, and further infrastructure, such as space station, orbital transfer, and reusable lander vehicles will be necessary, as prolonged stay on the Moon is required for exploration, research, and construction for the establishment of a permanent human settlement there. Human life in these habitats could be sustained for months, dependent on a continual flow of life-support supplies from Earth. Third-generation lunar bases will come into being as self sufficiency of human settlements becomes feasible. Regeneration of water, oxygen production, and development of indigenous construction materials from lunar resources will be necessary. Greenhouses will grow food supplies in engineered biospheres. Assured protection from solar flares and cosmic radiation must be provided, as well as provision for survival under meteor showers, or the threat of meteorite impact. All these seem to be possible within the second decade of the next century. Thus, the builders of Selenia, the first of the third-generation lunar bases are born today. During the last two years students from the School of Architecture of the University of Puerto Rico have studied the problems that relate to habitability for prolonged stay in extraterrestrial space. An orbital personnel transport to Mars developed originally by the Aerospace Engineering Department of the University of Michigan was investigated and habitability criteria for evaluation of human space habitats were proposed. An important finding from that study was that the necessary rotational diameter of the vessel has to be on the order of two kilometers to ensure comfort for humans under the artificial gravity conditions necessary to maintain physiological well being of passengers, beyond the level of mere survival.
Document ID
19930020559
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Date Acquired
September 6, 2013
Publication Date
January 1, 1991
Publication Information
Publication: Universities Space Research Association, Houston, Proceedings of the Seventh Annual Summer Conference. NASA(USRA: University Advanced Design Program
Subject Category
Man/System Technology And Life Support
Accession Number
93N29748
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available