NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Direct simulations of compressible wall-bounded turbulenceSeveral direct numerical simulations of high-speed turbulent Couette flow were performed with a new spectral code. Mach numbers up to three and a Reynolds number of 3000 were used. A new time-integration scheme was developed to handle Mach numbers above 1.5, which require greater accuracy and stability than lower Mach numbers. At low Mach number, the large streamwise eddies found by M. J. Lee in high incompressible Couette flow simulations were reproduced. At higher Mach numbers these structures still exist, but they become considerably less organized (although the disorganization may be a function of the spanwise box size). While the same types of vortical structures seen in the incompressible flow are observed at higher Mach numbers, a new structure involving the divergence of the velocity is also observed. This structure is generally associated with low shear areas next to the walls, but it has not been determined whether it is a cause or an effect of the low shear. A 'nonphysical' simulation was performed to determine by what mechanism the Mach number affects the flow. It appears that pressure gradient (acoustic) effects are more important than variable viscosity effects in determining the wall shear, but the size of vortical structures is determined more by the local kinematic viscosity. Low-order mean statistics are provided to help quantify these effects.
Document ID
19930074007
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Buell, Jeffrey C.
(Stanford Univ. CA, United States)
Date Acquired
August 16, 2013
Publication Date
February 1, 1991
Publication Information
Publication: Annual Research Briefs, 1990
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
93N71454
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available