NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Numerical simulation of the non-Newtonian mixing layerThis work is a continuing effort to advance our understanding of the effects of polymer additives on the structures of the mixing layer. In anticipation of full nonlinear simulations of the non-Newtonian mixing layer, we examined in a first stage the linear stability of the non-Newtonian mixing layer. The results of this study show that, for a fluid described by the Oldroyd-B model, viscoelasticity reduces the instability of the inviscid mixing layer in a special limit where the ratio (We/Re) is of order 1 where We is the Weissenberg number, a measure of the elasticity of the flow, and Re is the Reynolds number. In the present study, we pursue this project with numerical simulations of the non-Newtonian mixing layer. Our primary objective is to determine the effects of viscoelasticity on the roll-up structure. We also examine the origin of the numerical instabilities usually encountered in the simulations of non-Newtonian fluids.
Document ID
19940007842
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Azaiez, Jalel
(Stanford Univ. CA, United States)
Homsy, G. M.
(Stanford Univ. CA, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: Annual Research Briefs, 1992
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
94N12314
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available