NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Study on the mechanism of liquid phase sintering (M-12)The objectives were to (1) obtain the data representing the growth rate of solid particles in a liquid matrix without the effect of gravity; and (2) reveal the growth behavior of solid particles during liquid phase sintering using the data obtained. Nickel and tungsten are used as the constituent materials in liquid phase sintering. The properties of the constituent metals are given. When a compact of the mixture of tungsten and nickel powders is heated and kept at 1550 C, nickel melts down but tungsten stays solid. As the density of tungsten is much greater than that of nickel, the sedimentation of tungsten particles occurs in the experiment on Earth. The difference between the experiments on Earth and in space is illustrated. The tungsten particles sink to the bottom and are brought into contact with each other. The resulting pressure at the contact point causes the accelerated dissolution of tungsten. Consequently, flat surfaces are formed at the contact sites. As a result of dissolution and reprecipitation of tungsten, the shape of particles changes to a polygon. This phenomenon is called 'flattening.' An example of flattening of tungsten particles is shown. Thus, the data obtained by the experiment on Earth may not represent the exact growth behavior of the solid particles in a liquid matrix. If the experiments were done in a microgravity environment, the data corresponding to the theoretical growth behavior of solid particles could be achieved.
Document ID
19940009271
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Kohara, S.
(Tokyo Univ.)
Date Acquired
September 6, 2013
Publication Date
August 1, 1993
Publication Information
Publication: NASA. Marshall Space Flight Center, Spacelab J Experiment Descriptions
Subject Category
Materials Processing
Accession Number
94N13744
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available