NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Atmospheric correction of AVIRIS data in ocean watersHyperspectral data offers unique capabilities for characterizing the ocean environment. The spectral characterization of the composition of ocean waters can be organized into biological and terrigenous components. Biological photosynthetic pigments in ocean waters have unique spectral ocean color signatures which can be associated with different biological species. Additionally, suspended sediment has different scattering coefficients which result in ocean color signatures. Measuring the spatial distributions of these components in the maritime environments provides important tools for understanding and monitoring the ocean environment. These tools have significant applications in pollution, carbon cycle, current and water mass detection, location of fronts and eddies, sewage discharge and fate etc. Ocean color was used from satellite for describing the spatial variability of chlorophyll, water clarity (K(sub 490)), suspended sediment concentration, currents etc. Additionally, with improved atmospheric correction methods, ocean color results produced global products of spectral water leaving radiance (L(sub W)). Ocean color results clearly indicated strong applications for characterizing the spatial and temporal variability of bio-optical oceanography. These studies were largely the results of advanced atmospheric correction techniques applied to multispectral imagery. The atmosphere contributes approximately 80 percent - 90 percent of the satellite received radiance in the blue-green portion of the spectrum. In deep ocean waters, maximum transmission of visible radiance is achieved at 490nm. Conversely, nearly all of the light is absorbed by the water at wavelengths greater than about 650nm and thus appears black. These spectral ocean properties are exploited by algorithms developed for the atmospheric correction used in satellite ocean color processing. The objective was to apply atmospheric correction techniques that were used for procesing satellite Coastal Zone Color Scanner (CZCS) data to AVIRIS data. Quantitative measures of L(sub W) from AVIRIS are compared with ship ground truth data and input into bio-optical models.
Document ID
19940012217
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Terrie, Gregory
(Naval Research Lab. Bay Saint Louis, MS, United States)
Arnone, Robert
(Naval Research Lab. Bay Saint Louis, MS, United States)
Date Acquired
September 6, 2013
Publication Date
June 1, 1992
Publication Information
Publication: JPL, Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop
Subject Category
Oceanography
Accession Number
94N16690
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available