NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Geomorphic evidence for an eolian contribution to the formation of the Martian northern plainsThe northern plains of Mars have many morphologic characteristics that are uncommon or absent on the rest of the planet. Mariner 9 and Viking images obtained north of latitude 30 deg N revealed 'smooth' and 'mottled' plains of an uncertain origin. Some or all of the northern plains were interpreted to consist of lava plains intermixed with eolian and volcanic materials thick eolian mantles that buried portions of the mid latitudes periglacial deposits resulting from the presence of ground ice and as water-transported sediments derived from fluvial runoff, lacustrine deposition in standing bodies of water, or glacial runoff. The highest-resolution Viking images show many intriguing details that may provide clues to the origin of this complex and distinctive terrain. Some of the informative features present in the best Viking images, comparing the observations to what may be expected from various hypotheses of formation, are reviewed. While the results are not conclusive for any single hypothesis, eolian processes have played a major role in the erosion (and possibly deposition) of the materials that make up the surface exposures in the Martian northern plains.
Document ID
19940015929
Document Type
Conference Paper
Authors
Zimbelman, J. R. (National Air and Space Museum Washington, DC, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: Lunar and Planetary Inst., Workshop on the Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution
Subject Category
LUNAR AND PLANETARY EXPLORATION
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Related Records

IDRelationTitle19940014992Analytic PrimaryComputational Methods for Crashworthiness19940015909Analytic PrimaryWorkshop on the Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution