NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
SPIKE: Application for ASTRO-D mission planningSPIKE is a mission planning software system developed by a team of programmers at the STScI for use with the Hubble Space Telescope (HST). SPIKE has been developed for the purpose of automating observatory scheduling to increase the effective utilization and ultimately, scientific return from orbiting telescopes. High-level scheduling strategies using both rule-based and neural network approaches have been incorporated. Graphical displays of activities, constraints, and schedules are an important feature of the system. Although SPIKE was originally developed for the HST, it can be used for other astronomy missions including ground-based observatories. One of the missions that has decided to use SPIKE is ASTRO-D, a Japanese X-ray satellite for which the U.S. is providing a part of the scientific payload. Scheduled to fly in Feb. 1993, its four telescopes will focus X-rays over a wide energy range onto CCD's and imaging gas proportional counters. ASTRO-D will be the first X-ray imaging mission operating over the 0.5-12 keV band with high energy resolution. This combination of capabilities will enable a varied and exciting program of astronomical research to be carried out. ASTRO-D is expected to observe 5 to 20 objects per day and a total of several thousands per year. This requires the implementation of an efficient planning and scheduling system which SPIKE can provide. Although the version of SPIKE that will be used for ASTRO-D mission is almost identical to that used for the HST, there are a few differences. For example, ASTRO-D will use two ground stations for data downlinks, instead of the TDRSS system for data transmission. As a consequence ASTRO-D is constrained by limited on-board data storage capacity to schedule high data-rate observations during periods of frequent high bit rate observations accordingly. We will demonstrate the ASTRO-D version of SPIKE to show what SPIKE can provide and how efficiently it creates an observational schedule.
Document ID
19940018013
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Isobe, T.
(Massachusetts Inst. of Tech. Cambridge, MA, United States)
Johnston, M.
(Massachusetts Inst. of Tech. Cambridge, MA, United States)
Morgan, E.
(Massachusetts Inst. of Tech. Cambridge, MA, United States)
Clark, G.
(Massachusetts Inst. of Tech. Cambridge, MA, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1992
Publication Information
Publication: NASA, Washington, Second Annual Conference on Astronomical Data Analysis Software and Systems. Abstracts
Subject Category
Computer Programming And Software
Accession Number
94N22486
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available