NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Efficient transfer of images over networksEffective remote observing requires sending large images over long distances. The usual approach to the transfer problem is to require high bandwidth transmission links, which are expensive to install and operate. An alternative approach is to use existing low-bandwidth connections, such as phone lines or the Internet, in a highly efficient manner by compressing the images. The combined use of existing low-cost infrastructure and standard networking software means that remote observing can be made practical even for small observatories with limited network resources. The authors have implemented such a scheme based on the H-transform compression method developed for astronomical images, which are often resistant to compression because they are noisy. The H-transform can be used for either lossy or lossless compression, and compression factors of at least 10 can be achieved with no noticeable losses in the astrometric or photometric properties of the compressed images. The H-transform allows us to organize the information in an image so that the 'useful' information can be sent first, followed by the noise, which makes up the bulk of the transmission. The receiver can invert a partially received set of H-coefficients, creating an image that improves with time. The H-transform is particularly well-suited to this style of incremental reconstruction, because the spatially localized nature of the basis functions of the H-transorm prevents the appearance of artifacts such as ringing around point sources and edges. The authors' implementation uses the WIYN Telescope Control System's TCP-based communications protocol. An 800x800 16-bit astronomical image was sent over a 2400 baud connection, which would normally take about 71 minutes; after only 60 seconds, the partially received H-transform produced an image that did not differ appreciably from the original. This poster presents a quantification of the efficiencies, as well as examples of images reconstructed from partial data.
Document ID
19940018044
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Percival, J. W.
(Wisconsin Univ. Madison, WI, United States)
White, R. L.
(Space Telescope Science Inst. Baltimore, MD., United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1992
Publication Information
Publication: NASA, Washington, Second Annual Conference on Astronomical Data Analysis Software and Systems. Abstracts
Subject Category
Communications And Radar
Accession Number
94N22517
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available