NASA Logo

NTRS - NASA Technical Reports Server

Back to Results
Low earth orbit satellite/terrestrial mobile service compatibilityDigital cellular mobile 'second generation' systems are now gradually being introduced into service; one such example is GSM, which will provide a digital voice and data service throughout Europe. Total coverage is not expected to be achieved until the mid '90's, which has resulted in several proposals for the integration of GSM with a geostationary satellite service. Unfortunately, because terrestrial and space systems have been designed to optimize their performance for their particular environment, integration between a satellite and terrestrial system is unlikely to develop further than the satellite providing a back-up service. This lack of system compatibility is now being addressed by system designers of third generation systems. The next generation of mobile systems, referred to as FPLMTS (future public land mobile telecommunication systems) by CCIR and UMTS (universal mobile telecommunication system) in European research programs, are intended to provide inexpensive, hand-held terminals that can operate in either satellite, cellular, or cordless environments. This poses several challenges for system designers, not least in terms of the choice of multiple access technique and power requirements. Satellite mobile services have been dominated by the geostationary orbital type. Recently, however, a number of low earth orbit configurations have been proposed, for example Iridium. These systems are likely to be fully operational by the turn of the century, in time for the implementation of FPLMTS. The developments in LEO mobile satellite service technology were recognized at WARC-92 with the allocation of specific frequency bands for 'big' LEO's, as well as a frequency allocation for FPLMTS which included a specific satellite allocation. When considering integrating a space service into the terrestrial network, LEO's certainly appear to have their attractions: they can provide global coverage, the round trip delay is of the order of tens of milliseconds, and good visibility to the satellite is usually possible. This has resulted in their detailed investigation in the European COST 227 program and in the work program of the European Telecommunications Standards Institute (ETSI). This paper will consider the system implications of integrating a LEO mobile service with a terrestrial service. Results will be presented from simulation software to show how a particular orbital configuration affects the performance of the system in terms of area coverage and visibility to a terminal for various locations and minimum elevation angle. Possible network topologies are then proposed for an integrated satellite/terrestrial network.
Document ID
19940018354
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Sheriff, R. E.
(Bradford Univ.)
Gardiner, J. G.
(Bradford Univ.)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: JPL, Proceedings of the Third International Mobile Satellite Conference (IMSC 1993)
Subject Category
Communications And Radar
Accession Number
94N22827
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available