NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A theoretical evaluation of aluminum gel propellant two-phase flow losses on vehicle performanceA one-dimensional model of a hydrocarbon/Al/O2(gaseous) fueled rocket combustion chamber was developed to study secondary atomization effects on propellant combustion. This chamber model was coupled with a two dimensional, two-phase flow nozzle code to estimate the two-phase flow losses associated with solid combustion products. Results indicate that moderate secondary atomization significantly reduces propellant burnout distance and Al2O3 particle size; however, secondary atomization provides only moderate decreases in two-phase flow induced I(sub sp) losses. Despite these two-phase flow losses, a simple mission study indicates that aluminum gel propellants may permit a greater maximum payload than the hydrocarbon/O2 bi-propellant combination for a vehicle of fixed propellant volume. Secondary atomization was also found to reduce radiation losses from the solid combustion products to the chamber walls, primarily through reductions in propellant burnout distance.
Document ID
19940018558
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Mueller, Donn C.
(Pennsylvania State Univ. University Park, PA, United States)
Turns, Stephen R.
(Pennsylvania State Univ. University Park, PA, United States)
Date Acquired
September 6, 2013
Publication Date
November 1, 1993
Publication Information
Publication: NASA Propulsion Engineering Research Center, Volume 2
Subject Category
Spacecraft Propulsion And Power
Accession Number
94N23031
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available