NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
CFD analyses of combustor and nozzle flowfieldsThe objectives of the research are to improve design capabilities for low thrust rocket engines through understanding of the detailed mixing and combustion processes. A Computational Fluid Dynamic (CFD) technique is employed to model the flowfields within the combustor, nozzle, and near plume field. The computational modeling of the rocket engine flowfields requires the application of the complete Navier-Stokes equations, coupled with species diffusion equations. Of particular interest is a small gaseous hydrogen-oxygen thruster which is considered as a coordinated part of an ongoing experimental program at NASA LeRC. The numerical procedure is performed on both time-marching and time-accurate algorithms, using an LU approximate factorization in time, flux split upwinding differencing in space. The integrity of fuel film cooling along the wall, its effectiveness in the mixing with the core flow including unsteady large scale effects, the resultant impact on performance and the assessment of the near plume flow expansion to finite pressure altitude chamber are addressed.
Document ID
19940018560
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Tsuei, Hsin-Hua
(Pennsylvania State Univ. University Park, PA, United States)
Merkle, Charles L.
(Pennsylvania State Univ. University Park, PA, United States)
Date Acquired
September 6, 2013
Publication Date
November 1, 1993
Publication Information
Publication: NASA Propulsion Engineering Research Center, Volume 2
Subject Category
Spacecraft Propulsion And Power
Accession Number
94N23033
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available