NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Large eddy simulation of a boundary layer with concave streamwise curvatureOne of the most exciting recent developments in the field of large eddy simulation (LES) is the dynamic subgrid-scale model. The dynamic model concept is a general procedure for evaluating model constants by sampling a band of the smallest scales actually resolved in the simulation. To date, the procedure has been used primarily in conjunction with the Smagorinsky model. The dynamic procedure has the advantage that the value of the model constant need not be specified a priori, but rather is calculated as a function of space and time as the simulation progresses. This feature makes the dynamic model especially attractive for flows in complex geometries where it is difficult or impossible to calibrate model constants. The dynamic model was highly successful in benchmark tests involving homogeneous and channel flows. Having demonstrated the potential of the dynamic model in these simple flows, the overall direction of the LES effort at CTR shifted toward an evaluation of the model in more complex situations. The current test cases are basic engineering-type flows for which Reynolds averaged approaches were unable to model the turbulence to within engineering accuracy. Flows currently under investigation include a backward-facing step, wake behind a circular cylinder, airfoil at high angles of attack, separated flow in a diffuser, and boundary layer over a concave surface. Preliminary results from the backward-facing step and cylinder wake simulations are encouraging. Progress on the LES of a boundary layer on a concave surface is discussed. Although the geometry of a concave wall is not very complex, the boundary layer that develops on its surface is difficult to model due to the presence of streamwise Taylor-Gortler vortices. These vortices arise as a result of a centrifugal instability associated with the convex curvature.
Document ID
19940019673
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Lund, Thomas S.
(Stanford Univ. CA, United States)
Date Acquired
September 6, 2013
Publication Date
December 1, 1993
Publication Information
Publication: Annual Research Briefs, 1993
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
94N24146
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available