NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Effects of shock strength on shock turbulence interactionDirect numerical simulation (DNS) and linear analysis (LIA) of isotropic turbulence interacting with a shock wave are performed for several upstream shock normal Mach numbers (M(sub 1)). Turbulence kinetic energy (TKE) is amplified across the shock wave, but this amplification tends to saturate beyond M(sub 1) = 3.0. TKE amplification and Reynolds stress anisotropy obtained in DNS are consistent with LIA predictions. Rapid evolution of TKE immediate downstream of the shock wave persists for all shock strengths and is attributed to the transfer between kinetic and potential modes of turbulence energy through acoustic fluctuations. Changes in energy spectra and various length scales across the shock wave are predicted by LIA, which is consistent with DNS results. Most turbulence length scales decrease across the shock. Dissipation length scale (rho-bar q(exp 3) / epsilon), however, increases slightly for shock waves with M(sub 1) less than 1.65. Fluctuations in thermodynamic variables behind the shock wave stay nearly isentropic for M(sub 1) less than 1.2 and deviate significantly from isentropy for the stronger shock waves due to large entropy fluctuation generated through the interaction.
Document ID
19940019692
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Lee, Sangsan
(Stanford Univ. CA, United States)
Date Acquired
September 6, 2013
Publication Date
December 1, 1993
Publication Information
Publication: Annual Research Briefs, 1993
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
94N24165
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available