NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Ionospheric calibration for single frequency altimeter measurementsThis study is a preliminary analysis of the effectiveness (in terms of altimeter calibration accuracy) of various ionosphere models and the Global Positioning System (GPS) to calibrate single frequency altimeter height measurements for ionospheric path delay. In particular, the research focused on ingesting GPS Total Electron Content (TEC) data into the physical Parameterized Real-Time Ionospheric Specification Model (PRISM), which estimates the composition of the ionosphere using independent empirical and physical models and has the capability of adjusting to additional ionospheric measurements. Two types of GPS data were used to adjust the PRISM model: GPS receiver station data mapped from line-of-sight observations to the vertical at the point of interest and a grid map (generated at the Jet Propulsion Laboratory) of GPS derived TEC in a sun-fixed longitude frame. The adjusted PRISM TEC values, as well as predictions by the International Reference Ionosphere (IRI-90), a climatological (monthly mean) model of the ionosphere, were compared to TOPEX dual-frequency TEC measurements (considered as truth) for a number of TOPEX sub-satellite tracks. For a 13.6 GHz altimeter, a Total Electron Content (TEC) of 1 TECU 10(exp 16) electrons/sq m corresponds to approximately 0.218 centimeters of range delay. A maximum expected TEC (at solar maximum or during solar storms) of 10(exp 18) electrons/sq m will create 22 centimeters of range delay. Compared with the TOPEX data, the PRISM predictions were generally accurate within the TECU when the sub-satellite track of interest passed within 300 to 400 km of the GPS TEC data or when the track passed through a night-time ionosphere. If neither was the case, in particular if the track passed through a local noon ionosphere, the PRISM values differed by more than 10 TECU and by as much as 40 TECU. The IRI-90 model, with no current ability to unseat GPS data, predicted TEC to a slightly higher error of 12 TECU. The performance of PRISM is very promising for predicting TEC and will prove useful for calibrating single frequency altimeter height measurements for ionospheric path delay. When adjusted to the GPS line-of-sight data the PRISM URSI empirical model predicted TEC over a day's period to within a global error of 8.60 TECU rms during a nighttime ionosphere and 9.74 TECU rms during the day. When adjusted to the GPS derived TEC grid, the PRISM parametrized model predicted TEC to within an error of 8.47 TECU rms for a nighttime ionosphere and 12.83 TECU rms during the day. However, the grid cannot be considered globally due to the lack of sufficient numbers of GPS stations and large latitude gaps in GPS data. It is the opinion of the authors that using the PRISM model and adjusting to the global sun-fixed TEC grid regenerated with a localized weighted interpolation offers the best possibility of meeting the 10 TECU global rms (or 2 cm at 13.6 GHz) ionosphere range correction accuracy requirement of TOPEX/Poseidon and should be the subject of further study. However, it is clear that the anticipated requirement of 34 TECU global rms for TOPEX/Poseidon Follow-On (corresponding to the TOPEX/Poseidon performance) can not be met with any realizable combination of existing models and data assimilation schemes.
Document ID
19940023380
Acquisition Source
Legacy CDMS
Document Type
Contractor Report (CR)
Authors
Schreiner, William S.
(Colorado Univ. Boulder, CO, United States)
Born, George H.
(Colorado Univ. Boulder, CO, United States)
Markin, Robert E.
(Colorado Univ. Boulder, CO, United States)
Date Acquired
September 6, 2013
Publication Date
March 21, 1994
Subject Category
Geophysics
Report/Patent Number
NAS 1.26:195709
NASA-CR-195709
Report Number: NAS 1.26:195709
Report Number: NASA-CR-195709
Accession Number
94N27883
Funding Number(s)
CONTRACT_GRANT: NAG1-1491
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available