NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Measurement of atmospheric OH by titration of near-IR fluorescent dyesRecent research has shown that certain polymethine dyes can be detected at ultratrace levels (greater than or equal to 6x10(exp -14) M) in solution by fluorimetry. These detection limits are possible because of the inherent sensitivity of fluorescence techniques, because the dyes fluoresce in the near infrared region where background interference is negligible, and because powerful infrared diode lasers are now available to improve the signal to noise ratio. Other work has shown that the hydroxyl radical destroys the ability of polymethine dyes to fluoresce. These observations form the basis for a new hydroxyl radical detector that is essentially a fluorometric titrator. Theoretically, the detector should show an acceptable sensitivity and response time. Assuming that the atmospheric HO concentration is about 10(exp -11) moles m(exp -3) (i.e. 10(exp 6) molecules cm(exp -3)), then 10 L of air 'titrated' with 20 mL of 10(exp -11) M dye solution (an easily detected concentration) should result in a drop in the fluorescent signal of 50 percent - a readily detectable change. At a flow rate of 3 L min(exp -1) the sampling time would be 3 minutes. The biggest potential problem is selectivity: other oxidants may also cause the fluorescence signal to be lost. The chemistry of polymethine dyes has not been studied in detail and so no quantitative data are available. However, a survey of the literature suggests that in general HO should react up to six orders of magnitude faster than HO2 and other radicals such as RO2 and RO. It should also react much more rapidly than H2O2 and O3. Thus it may be possible to discriminate kinetically against potential interfering substances. It was shown in the laboratory that 10(exp -4) M H2O2 has little effect on the absorption spectrum of the dye IR125 over a period of hours but that the band at 780 nm is slowly lost in water over a period of days even under argon in the dark. By contrast, DMSO solutions of IR125 are stable.
Document ID
19940024096
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Betterton, Eric A.
(Arizona Univ. Tucson, AZ, United States)
Gast, Karl
(Arizona Univ. Tucson, AZ, United States)
Date Acquired
September 6, 2013
Publication Date
February 1, 1994
Publication Information
Publication: SRI International Corp., Local Measurement of Tropospheric HO(x)
Subject Category
Environment Pollution
Accession Number
94N28599
Funding Number(s)
PROJECT: EPRI PROJ. 8004-11
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available