NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The importance of environmental conditions in reflectance spectroscopy of laboratory analogs for Mars surface materialsReflectance spectra are presented here for a variety of particulate, ferric-containing analogs to Martian soil (Fe(3+)-doped smectites and palagonites) to facilitate interpretation of remotely acquired spectra. The analog spectra were measured under differing environmental conditions to evaluate the influence of exposure history on water content and absorption features due to H2O in these samples. Each of these materials contains structural OH bonded to metal cations, adsorbed H2O, and bound H2O (either in a glass, structural site, or bound to a cation). Previous experiments involving a variety of Mars analogs have shown that the 3 micron H2O band in spectra of palagonites is more resistant to drying than the 3 micron H2O band in spectra of montmorillonites. Other experiments have shown that spectra of ferrihydrite and montmorillonites doped with ferric sulfate also contain sufficient bound H2O to retain a strong 3 micron band under dry conditions. Once the effects of the environment on bound water in clays, oxides, and salts are better understood, the hydration bands measured via reflectance spectroscopy can be used to gain information about the chemical composition and moisture content of real soil systems. Such information would be especially useful in interpreting observations of Mars where subtle spatial variations in the strengths of metal-OH and H2O absorptions have been observed in telescopic and ISM spectra. We measured bidirectional reflectance spectra of several Mars soil analogs under controlled environmental conditions to assess the effects of moisture content on the metal-OH and H2O absorptions. The samples analyzed include chemically altered montmorillonites, ferrihydrite. and palagonites from Hawaii and Iceland. Procedures for preparation of the cation-exchanged montmorillonites, ferric-salt doped montmorillonites, and ferric oxyhydroxides are described in detail elsewhere.
Document ID
19940028689
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Bishop, J.
(Brown Univ. Providence, RI, United States)
Murchie, S.
(Brown Univ. Providence, RI, United States)
Pratt, S.
(Brown Univ. Providence, RI, United States)
Mustard, J.
(Brown Univ. Providence, RI, United States)
Pieters, C.
(Brown Univ. Providence, RI, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: Lunar and Planetary Inst., Mars: Past, Present, and Future. Results from the MSATT Program, Part 1
Subject Category
Lunar And Planetary Exploration
Accession Number
94N33195
Funding Number(s)
CONTRACT_GRANT: NAGW-748
CONTRACT_GRANT: NAGW-28
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available