NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Magmatic volatiles and the weathering of MarsThe sources for volatiles on Mars have been the subject of many hypotheses for exogenous influences including late accretion of volatile-enriched material, impact devolatilization to create massive early atmospheres, and even major bombardment by comets. However, the inventory of chemically active volatiles observable at the contemporary surface of Mars is consistent with domination by endogenous, subsequent planetary processes, viz., persistent magmatic outgassing. Volcanism on Mars has been widespread in both space and time. Notwithstanding important specific differences between the mantles of Earth and Mars, the geochemical similarities are such that the suite of gases emitted from Martian volcanic activity should include H2O, CO2, S-containing gases (e.g. H2S and/or SO2), and Cl-containing gases (e.g., Cl2 and/or HCl). H2O and CO2 exist in the atmosphere of Mars. Both are also present as surface condensates. However, spectroscopic observations of the Martian atmosphere clearly show that the S- and Cl-containing gases are severely depleted, with upper limits of less than or equal to 10(exp -7) the abundance of CO2. Likewise, there is no evidence of polar condensates of compounds of these elements as there is for CO2 and H2O. Within the soil, on the other hand, there has been direct measurement of incorporated H2O and abundant compounds containing S and Cl. Barring some as yet implausible geochemical sequestering process, the S/Cl ratio of about 6:1 in Martian soils implies a limit of 5% on the contribution of matter of solarlike composition (e.g., carbonaceous chondrite or cometary material) to these volatiles. Hence, exogenous sources are minor or not yet observed. From analysis of elemental trends in Martian soils, it has been recently shown that a simple two-component model can satisfy the Viking in situ measurements. Component A includes Si and most or all the Al, Ca, Ti, and Fe. Component B, taken as 16 +/- 3% by weight of the total, contains S and most or all the Cl and Mg. These results constrain several models of Martian soil mineralogy but are consistent with a mixture of silicates (such as Fe-rich clays and accessory minerals and soluble salts). The overall element profile is notably like shergottites, with significant incorporation of chemically reactive atmospheric gases from magmatic degassing.
Document ID
19940028695
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Clark, B. C.
(Martin Marietta Corp. Denver, CO, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: Lunar and Planetary Inst., Mars: Past, Present, and Future. Results from the MSATT Program, Part 1
Subject Category
Lunar And Planetary Exploration
Accession Number
94N33201
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available