NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Thermal and hydraulic considerations regarding the fate of water discharged by the outflow channels to the Martian northern plainsThe identification of possible shorelines in the Martian northern plains suggests that the water discharged by the circum-Chryse outflow channels may have led to the formation of transient seas, or possibly even an ocean, covering as much as one-third of the planet. Speculations regarding the possible fate of this water have included local ponding and reinfiltration into the crust; freezing, sublimation, and eventual cold-trapping at higher latitudes; or the in situ survival of this now frozen water to the present day -- perhaps aided by burial beneath a protective cover of eolian sediment or lavas. Although neither cold-trapping at higher latitudes nor the subsequent freezing and burial of flood waters can be ruled out, thermal and hydraulic considerations effectively eliminate the possibility that any significant reassimilation of this water by local infiltration has occurred given climatic conditions resembling those of today. The arguments against the local infiltration of flood water into the northern plains are two-fold. First, given the climatic and geothermal conditions that are thought to have prevailed on Mars during the Late Hesperian (the period of peak outflow channel activity in the northern plains), the thickness of the cryosphere in Chryse Planitia is likely to have exceeded 1 km. A necessary precondition for the widespread occurrence of groundwater is that the thermodynamic sink represented by the cryosphere must already be saturated with ice. For this reason, the ice-saturated cryosphere acts as an impermeable barrier that effectively precludes the local resupply of subpermafrost groundwater by the infiltration of water discharged to the surface by catastraphic floods. Note that the problem of local infiltration is not significantly improved even if the cryosphere were initially dry, for as water attempts to infiltrate the cold, dry crust, it will quickly freeze, creating a seal that prevents any further infiltration from the ponded water above. The second argument against the local infiltration of flood water in the northern plains is based on hydraulic considerations. Repeated impacts have likely brecciated the Martian crust down to a depth of roughly 10 km. Given a value of permeability no greater than that inferred for the top 10 km of the Earth's crust (approximately 10(exp -2) darcies), a timescale as much as a billion years or more for the Martian groundwater system to achieve hydrostatic equilibrium, and the approximately 2-4 km elevation difference between the outflow channel source regions and the northern plains, the water confined beneath the frozen crust of the northern plains should have been under a significant hydraulic head. Thus, the existence of a hydraulic pathway between the ponded flood waters above the northern plains and the confined aquifer lying beneath it would not have led to the infiltration of flood water back into the crust, but rather the additional expulsion of groundwater onto the surface.
Document ID
19940028696
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Clifford, S. M.
(Lunar and Planetary Inst. Houston, TX, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: Mars: Past, Present, and Future. Results from the MSATT Program, Part 1
Subject Category
Lunar And Planetary Exploration
Accession Number
94N33202
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available