NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Dynamic force response of spherical hydrostatic journal bearing for cryogenic applicationsHydrostatic Journal Bearings (HJB's) are reliable and resilient fluid film rotor support elements ideal to replace roller bearings in cryogenic turbomachinery. HJB' will be used for primary space-power applications due to their long lifetime, low friction and wear, large load capacity, large direct stiffness, and damping force coefficients. An analysis for the performance characteristics of turbulent flow, orifice compensated, spherical hydrostatic journal bearings (HJB's) is presented. Spherical bearings allow tolerance for shaft misalignment without force performance degradation and have also the ability to support axial loads. The spherical HJB combines these advantages to provide a bearing design which could be used efficiently on high performance turbomachinery. The motion of a barotropic liquid on the thin film bearing lands is described by bulk-flow mass and momentum equations. These equations are solved numerically using an efficient CFD method. Numerical predictions of load capacity and force coefficients for a 6 recess, spherical HJB in a LO2 environment are presented. Fluid film axial forces and force coefficients of a magnitude about 20% of the radial load capacity are predicted for the case analyzed. Fluid inertia effects, advective and centrifugal, are found to affect greatly the static and dynamic force performance of the bearing studied.
Document ID
19940029692
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Sanandres, Luis
(Texas A&M Univ. College Station, TX, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1994
Publication Information
Publication: NASA. Lewis Research Center, Rotordynamic Instability Problems in High-Performance Turbomachinery, 1993
Subject Category
Mechanical Engineering
Accession Number
94N34198
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available