NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Future ultra-speed tube-flightFuture long-link, ultra-speed, surface transport systems will require electromagnetically (EM) driven and restrained vehicles operating under reduced-atmosphere in very straight tubes. Such tube-flight trains will be safe, energy conservative, pollution-free, and in a protected environment. Hypersonic (and even hyperballistic) speeds are theoretically achievable. Ultimate system choices will represent tradeoffs between amoritized capital costs (ACC) and operating costs. For example, long coasting links might employ aerodynamic lift coupled with EM restraint and drag make-up. Optimized, combined EM lift, and thrust vectors could reduce energy costs but at increased ACC. (Repulsive levitation can produce lift-over-drag l/d ratios a decade greater than aerodynamic), Alternatively, vehicle-emanated, induced-mirror fields in a conducting (aluminum sheet) road bed could reduce ACC but at substantial energy costs. Ultra-speed tube flight will demand fast-acting, high-precision sensors and computerized magnetic shimming. This same control system can maintain a magnetic 'guide way' invariant in inertial space with inertial detectors imbedded in tube structures to sense and correct for earth tremors. Ultra-speed tube flight can complete with aircraft for transit time and can provide even greater passenger convenience by single-model connections with local subways and feeder lines. Although cargo transport generally will not need to be performed at ultra speeds, such speeds may well be desirable for high throughput to optimize channel costs. Thus, a large and expensive pipeline might be replaced with small EM-driven pallets at high speeds.
Document ID
19940031411
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Salter, Robert M.
(Xerad, Inc. Santa Monica, CA, United States)
Date Acquired
September 6, 2013
Publication Date
May 1, 1994
Publication Information
Publication: NASA. Langley Research Center, Second International Symposium on Magnetic Suspension Technology, Part 2
Subject Category
Mechanical Engineering
Accession Number
94N35918
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available