NTRS - NASA Technical Reports Server

Back to Results
SAGE 2-Umkehr case study of ozone differences and aerosol effects from October 1984 to April 1989A comparison of 1262 cases of coincident ozone profiles derived from 666 Umkehrs at 17 different stations and 901 SAGE 2 profiles within 1000 km and 12 hours between October 1984 and April 1989 indicates the following layer percentage differences with 2-sigma error bars: layer three 14.6 plus/minus 3.3 percent, layer four 17.6 plus/minus 1.1 percent, layer five -1.3 plus/minus 0.5 percent, layer six -5.7 plus/minus 0.7 percent, layer seven -1.0 plus/minus 0.7 percent, layer eight 4.2 plus/minus 0.7 percent, and layer nine 6.8 plus/minus 1.2 percent. Comparing SAGE 2-Umkehr differences to SAGE 1 version 5.5-Umkehr differences shows SAGE 2 higher than or equal to SAGE 1 relative to Umkehr in all layers except layer three. Adjustment for this bias would produce trends derived from SAGE 2-SAGE 1 differences and Umkehr observations in the 1980s more nearly equal to each other in layers six, seven, and eight. A possible explanation of these differences is a systematic shift in the reference altitude between SAGE 1 and SAGE 2, but there is no independent evidence of this. While the shape of the vertical profile of differences at 17 individual Umkehr stations (mostly in mid-latitudes) is generally consistent at all stations except at Poker Flat, Seoul, and Lauder, significant variation does exists among the stations. The profile of mean difference is similar to previously observed differences between Umkehr and both SAGE 2 and SBUV and also to an eigenvector analysis, but with site-dependent amplitude discrepancies. Because of the close correspondence of stratospheric aerosol optical depth at the SAGE 2-measured 0.525 micron wavelength and the extrapolated 0.32 Umkehr wavelength determined in this study, we use the 0.525 micron data to determine the aerosol effect of Umkehr profiles. The aerosol errors to the Umkehr ozone amounts in percent ozone amount per 0.01 stratospheric aerosol optical depth range from plus 2 percent in layer six to minus 3 percent in layer nine. These results agree with previous theoretical and empirical studies within their respective error bounds in layers nine, eight, and five. The result in layer six differs significantly from previous works. In view of the fact that SAGE 2 and Umkehr produce different ozone retrievals in layers eight and nine and because the intra-layer correlation of SAGE 2 ozone and aerosol in layers eight and nine in non-zero, one must exercise some caution in attributing the entire SAGE 2-Umkehr differences in the upper layers to an aerosol effect.
Document ID
Document Type
Conference Paper
Newchurch, M. J. (Alabama Univ. Huntsville, AL, United States)
Cunnold, D. M. (Alabama Univ. Huntsville, AL, United States)
Date Acquired
September 6, 2013
Publication Date
April 1, 1994
Publication Information
Publication: NASA. Goddard Space Flight Center, Ozone in the Troposphere and Stratosphere, Part 2
Subject Category
Distribution Limits
Work of the US Gov. Public Use Permitted.

Available Downloads

NameType 19950004681.pdf STI

Related Records

IDRelationTitle19950004531Analytic PrimaryWorkshop on the Analysis of Interplanetary Dust Particles