NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Measurement and modification of the EEG and related behaviorElectrophysiological changes in the sensorimotor pathways were found to accompany the effect of rhythmic EEG patterns in the sensorimotor cortex. Additionally, several striking behavioral changes were seen, including in particular an enhancement of sleep and an elevation of seizure threshold to epileptogenic agents. This raised the possibility that human seizure disorders might be influenced therapeutically by similar training. Our objective in human EEG feedback training became not only the facilitation of normal rhythmic patterns, but also the suppression of abnormal activity, thus requiring complex contingencies directed to the normalization of the sensorimotor EEG. To achieve this, a multicomponent frequency analysis was developed to extract and separate normal and abnormal elements of the EEG signal. Each of these elements was transduced to a specific component of a visual display system, and these were combined through logic circuits to present the subject with a symbolic display. Variable criteria provided for the gradual shaping of EEG elements towards the desired normal pattern. Some 50-70% of patients with poorly controlled seizure disorders experienced therapeutic benefits from this approach in our laboratory, and subsequently in many others. A more recent application of this approach to the modification of human brain function in our lab has been directed to the dichotomous problems of task overload and underload in the contemporary aviation environment. At least 70% of all aviation accidents have been attributed to the impact of these kinds of problems on crew performance. The use of EEG in this context has required many technical innovations and the application of the latest advances in EEG signal analysis. Our first goal has been the identification of relevant EEG characteristics. Additionally, we have developed a portable recording and analysis system for application in this context. Findings from laboratory and in-flight studies suggest that we will be able to detect appropriate changes in brain function, and feed this information to on-board computers for modification of mission requirements and/or crew status.
Document ID
19950007625
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Sterman, M. B.
(California Univ. Los Angeles, CA, United States)
Date Acquired
September 6, 2013
Publication Date
June 1, 1991
Publication Information
Publication: NASA. Ames Research Center, Human Machine Interfaces for Teleoperators and Virtual Environments
Subject Category
Man/System Technology And Life Support
Accession Number
95N14038
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available