NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Basic features of the STS/Spacelab vibration environmentThe Space Shuttle acceleration environment is characterized. The acceleration environment is composed of a residual or quasi-steady component and higher frequency components induced by vehicle structural modes and the operation of onboard machinery. Quasi-steady accelerations are generally due to atmospheric drag, gravity gradient effects, and rotational forces. These accelerations tend to vary with the orbital frequency (approx. 10(exp -4) Hz) and have magnitudes less than or equal to 10(exp -6) g(sub 0) (where 1 g(sub 0) is terrestrial gravity). Higher frequency g-jitter is characterized by oscillatory disturbances in the 1-100 Hz range and transient components. Oscillatory accelerations are related to the response of large flexible structures like antennae, the Spacelab module, and the Orbiter itself, and to the operation of rotating machinery. The Orbiter structural modes in the 1-10 Hz range, are excited by oscillatory and transient disturbances and tend to dominate the energy spectrum of the acceleration environment. A comparison of the acceleration measurements from different Space Shuttle missions reveals the characteristic signature of the structural modes of the Orbiter overlaid with mission specific hardware induced disturbances and their harmonics. Transient accelerations are usually attributed to crew activity and Orbiter thruster operations. During crew sleep periods, the acceleration levels are typically on the order of 10(exp -6) g(sub 0) (1 micro-g). Crew work and exercise tend to raise the accelerations to the 10(exp -3) g(sub 0) (1 milli-g) level. Vernier reaction control system firings tend to cause accelerations of 10(exp -4) g(sub 0), while primary reaction control system and Orbiter maneuvering system firings cause accelerations as large as 10(exp -2) g(sub 0). Vibration isolation techniques (both active and passive systems) used during crew exercise have been shown to significantly reduce the acceleration magnitudes.
Document ID
19950007796
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Baugher, Charles R.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Ramachandran, N.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
September 6, 2013
Publication Date
May 1, 1994
Publication Information
Publication: Joint Launch + One Year Science Review of USML-1 and USMP-1 with the Microgravity Measurement Group
Subject Category
Spacecraft Design, Testing And Performance
Accession Number
95N14210
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available