NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Triple flames and flame stabilizationIt is now well established that when turbulent jet flames are lifted, combustion begins, i.e., the flame is stabilized, at an axial station where the fuel and air are partially premixed. One might expect, therefore, that the beginning of the combustion zone would be a triple flame. Such flames have been described; however, other experiments provide data that are difficult to reconcile with the presence of triple flames. In particular, laser images of CH and OH, marking combustion zones, do not exhibit shapes typical of triple flames, and, more significantly, the lifted flame appears to have a propagation speed that is an order of magnitude higher than the laminar flame speed. The speed of triple flames studied thus far exceeds the laminar value by a factor less than two. The objective of the present task is the resolution of the apparent conflict between the experiments and the triple flame characteristics, and the clarification of the mechanisms controlling flame stability. Being investigated are the resolution achieved in the experiments, the flow field in the neighborhood of the stabilization point, propagation speeds of triple flames, laboratory flame unsteadiness, and the importance of flame ignition limits in the calculation of triple flames that resemble lifted flames.
Document ID
19950016024
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Broadwell, James E.
(Stanford Univ. CA, United States)
Date Acquired
September 6, 2013
Publication Date
December 1, 1994
Publication Information
Publication: Annual Research Briefs, 1994
Subject Category
Inorganic And Physical Chemistry
Accession Number
95N22441
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available