NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Large-eddy simulation of flow through a plane, asymmetric diffuserA challenge for traditional turbulence modeling, based on the Reynolds averaged Navier-Stokes equations, remains the accurate prediction of 'mild', adverse pressure-gradient driven separation from a smooth surface. With this study we want to explore the capability of large-eddy simulation to predict the separation which occurs on the deflected wall of an asymmetric, plane diffuser with opening angle of 10 deg. The flow through the plane diffuser exhibits some additional interesting physical phenomena which make it a challenging test case. In addition to 'mild' separation about halfway down the deflected ramp, the flow is characterized by a small backflow zone with stalled fluid in the rear part of the expanding section. The turbulent flow entering the diffuser is subject to combined adverse and radial pressure gradients stemming from the convex curvature. Finally the flow recovers into a developed, turbulent channel flow in the outlet section. Obi et al. provide measurements of mean flow, Reynolds stresses, and pressure recovery, which were obtained by means of LDV in a wind tunnel. The objective of this study is to investigate whether LES with the standard dynamic model is able to accurately predict the flow in the one-sided diffuser and to explore the resolution requirements and associated costs.
Document ID
19950016032
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Kaltenbach, Hans-Jakob
(Stanford Univ. CA, United States)
Date Acquired
September 6, 2013
Publication Date
December 1, 1994
Publication Information
Publication: Annual Research Briefs, 1994
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
95N22449
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available