NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Handling qualities of the High Speed Civil TransportThe low speed handling qualities of a High Speed Civil Transport class aircraft have been investigated by using data of the former Advanced Supersonic Transport (AST) 105. The operation of such vehicles in the airport terminal area is characterized by 'backside' performance. Main objectives of this research effort were: (Q) determination of the nature and magnitude of the speed instability associated with the backside of the thrust required curve; (2) confirmation of the validity of existing MIL-SPEC handling qualities criteria; (3) safety of operation of the vehicle in the event of autothrottle failure; and (4) correlation of required engine responsiveness with level of speed instability. Preliminary findings comprise the following: (1) The critical velocity for speed instability was determined to be 196 knots, well above the projected approach speed of 155 knots. This puts the vehicle far on the backside of its thrust required curve. While the aircraft can be configured to have static and dynamic stability at this trim point, a significant speed instability emerges, if a pilot or autopilot attempts flight path control with elevator and/or canard control surfaces only. This requires a properly configured autothrottle and/or variable aerodynamic drag devices which can provide speed stability; (2) An AST 105 type vehicle meets MIL-SPEC criteria only in part. While the damping criteria for phugoid and short period motion are met easily, the AST 105 falls short of the required minimum short period frequency, meaning that the HSCT is too sluggish in pitch to meet the military criteria. Obviously the military specification do not consider a vehicle with such high pitch inertia. With regard to speed stability and flight path stability criteria, the vehicle meets levels 2 and 3 of the military requirements, indicating that it would be landed safety with manual controls in case of an autothrottle failure, even though the pilot workload would be high; and (3) This requires quick thrust response to throttle adjustment, however. If the engine responsiveness is slow, the aircraft handling qualities are further deteriorated. Progress has been made in correlating required engine responses dyanmics with the given level of speed instability of the vehicle.
Document ID
19950016905
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Solies, U. Peter
(Tennessee Univ. Space Inst. Tullahoma, TN, United States)
Date Acquired
September 6, 2013
Publication Date
December 1, 1994
Publication Information
Publication: Hampton Univ., 1994 NASA-HU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program
Subject Category
Aircraft Stability And Control
Accession Number
95N23325
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available