NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Theoretical studies of spectroscopic problems of importance for atmospheric radiation measurementsMany of the instruments used to deduce the physical parameters of the Earth's atmosphere necessary for climate studies or for pollution monitoring (for instance, temperature versus pressure or number densities of trace molecules) rely on the existence of accurate spectroscopic data and an understanding of the physical processes responsible for the absorption or emission of radiation. During the summer, research was either continued or begun on three distinct problems: (1) an improved theoretical framework for the calculation of the far-wing absorption of allowed spectral lines; (2) a refinement of the calculation of the collision-induced fundamental spectrum of N2; and (3) an investigation of possible line-mixing effects in the fundamental spectrum of CH4. Progress in these three areas is summarized below. During the past few years, we have developed a theoretical framework for the calculation of the absorption of radiation by the far wings of spectral lines. Such absorption due to water vapor plays a crucial role in the greenhouse effect as well as limiting the retrieval of temperature profiles from satellite data. Several improvements in the theory have been made and the results are being prepared for publication. Last year we published results for the theoretical calculation of the absorption of radiation due to the dipoles induced during binary collisions of N2 molecules using independently measured molecular parameters; the results were in reasonable agreement with experimental data. However, recent measurements have revealed new fine structure that has been attributed to line-mixing effects. We do not think that this is correct, rather that the structure results from short-range anisotropic dipoles. We are in the process of including this refinement in our theoretical calculation in order to compare with the new experimental data. Subtle changes in the spectra of CH4 measured by researchers at Langley have also been attributed to line-mixing effects. By analyzing the same spectral lines we have attempted to verify or rule out possible line-mixing mechanisms. Due to the complexity and richness of the spectrum of this highly symmetric molecule, as well as the small magnitude of the effects, a detailed first-principle calculation of the mixing is a difficult problem. Before such a program is undertaken it is important to glean as much information as possible concerning the possible mechanisms by a systematic analysis of the existing data.
Document ID
19950016909
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Tipping, Richard H.
(Alabama Univ. Tuscaloosa, AL, United States)
Date Acquired
September 6, 2013
Publication Date
December 1, 1994
Publication Information
Publication: Hampton Univ., 1994 NASA-HU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program
Subject Category
Geophysics
Accession Number
95N23329
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available