NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
An operations and command systems for the extreme ultraviolet explorerAbout 40% of the budget of a scientific spacecraft mission is usually consumed by Mission Operations & Data Analysis (MO&DA) with MO driving these costs. In the current practice, MO is separated from spacecraft design and comes in focus relatively late in the mission life cycle. As a result, spacecraft may be designed that are very difficult to operate. NASA centers have extensive MO expertise but often lessons learned in one mission are not exploited for other parallel or future missions. A significant reduction of MO costs is essential to ensure a continuing and growing access to space for the scientific community. We are addressing some of these issues with a highly automated payload operations and command system for an existing mission, the Extreme Ultraviolet Explorer (EUVE). EUVE is currently operated jointly by the Goddard Space Flight Center (GSFC), responsible for spacecraft operations, and the Center for Extreme Ultraviolet Astrophysics (CEA) of the University of California, Berkeley, which controls the telescopes and scientific instruments aboard the satellite. The new automated system is being developed by a team including personnel from the NASA Ames Research Center (ARC), the Jet Propulsion Laboratory (JPL) and the Center for EUV Astrophysics (CEA). An important goal of the project is to provide AI-based technology that can be easily operated by nonspecialists in AI. Another important goal is the reusability of the techniques for other missions. Models of the EUVE spacecraft need to be built both for planning/scheduling and for monitoring. In both cases, our modeling tools allow the assembly of a spacecraft model from separate sub-models of the various spacecraft subsystems. These sub-models are reusable; therefore, building mission operations systems for another small satellite mission will require choosing pre-existing modules, reparametrizing them with respect to the actual satellite telemetry information, and reassembling them in a new model. We briefly describe the EUVE mission and indicate why it is particularly suitable for the task. Then we briefly outline our current work in mission planning/scheduling and spacecraft and instrument health monitoring.
Document ID
19950017267
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Muscettola, Nicola
(NASA Ames Research Center Moffett Field, CA, United States)
Korsmeyer, David J.
(NASA Ames Research Center Moffett Field, CA, United States)
Olson, Eric C.
(California Univ. Berkeley, CA., United States)
Wong, Gary
(California Univ. Berkeley, CA., United States)
Date Acquired
September 6, 2013
Publication Date
October 1, 1994
Publication Information
Publication: JPL, Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994
Subject Category
Cybernetics
Accession Number
95N23687
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available