NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Characterization and manufacture of braided composites for large commercial aircraft structuresBraided composite materials, one of the advanced material forms which is under investigation in Boeing's ATCAS program, have been recognized as a potential cost-effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. The overall objective of this work is to advance braided composite technology towards applications to a large commercial transport fuselage. This paper summarizes the mechanics of materials and manufacturing demonstration results which have been obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 1D, 2D triaxial, and 3D braid patterns with thermoplastic and two RTM resin systems were investigated. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architectures, stiffnesses, fiber stresses, failure mechanisms, notch effects, and the entire history of failure of the braided composites specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration. Three foot fuselage circumferential hoop frames were manufactured to demonstrate the feasibility of consistently producing high quality braided/RTM composite primary structures. The manufacturing issues (tooling requirements, processing requirements, and process/quality control) addressed during the demonstration are summarized. The manufacturing demonstration in conjunction with the mechanical test results and developed analytical methods increased the confidence in the ATCAS approach to the design, manufacture, test, and analysis of braided composites.
Document ID
19950022057
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Fedro, Mark J.
(Boeing Defense and Space Group Philadelphia, PA, United States)
Willden, Kurtis
(Boeing Commercial Airplane Co. Seattle, WA., United States)
Date Acquired
September 6, 2013
Publication Date
September 1, 1992
Publication Information
Publication: FAA, Ninth DOD(NASA)FAA Conference on Fibrous Composites in Structural Design, Volume 2
Subject Category
Composite Materials
Accession Number
95N28478
Funding Number(s)
CONTRACT_GRANT: NAS1-18889
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available