NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The role of the vestibular system in manual target localizationAstronauts experience perceptual and sensory-motor disturbances during spaceflight and immediately after return to the 1-g environment of Earth. During spaceflight, sensory information from the eyes, limbs and vestibular organs is reinterpreted by the central nervous system so that astronauts can produce appropriate body movements in microgravity. Alterations in sensory-motor function may affect eye-head-hand coordination and, thus, the crewmember's ability to manually locate objects in extrapersonal space. Previous reports have demonstrated that crewmembers have difficulty in estimating joint and limb position and in pointing to memorized target positions on orbit and immediately postflight. One set of internal cues that may assist in the manual localization of objects is information from the vestibular system. This system contributes to our sense of the body's position in space by providing information on head position and movement and the orientation of the body with respect to gravity. Research on the vestibular system has concentrated on its role in oculo-motor control. Little is known about the role that vestibular information plays in manual motor control, such as reaching and pointing movements. Since central interpretation of vestibular information is altered in microgravity, it is important to determine its role in this process. This summer, we determined the importance of vestibular information in a subject's ability to point accurately toward a target in extrapersonal space. Subjects were passively rotated across the earth-vertical axis and then asked to point back to a previously-seen target. In the first paradigm, the subjects used both visual and vestibular cues for the pointing response, while, in the second paradigm, subjects used only vestibular information. Subjects were able to point with 85 percent accuracy to a target using vestibular information alone. We infer from this result that vestibular input plays a role in the spatial programming of manual responses.
Document ID
19950026001
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Barry, Susan R.
(Mount Holyoke Coll. South Hadley, MA, United States)
Mueller, S. Alyssa
(Mount Holyoke Coll. South Hadley, MA, United States)
Date Acquired
September 6, 2013
Publication Date
July 1, 1995
Publication Information
Publication: NASA. Johnson Space Center, National Aeronautics and Space Administration (NASA)(American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1994, Volume 1 14 p (SEE N95-32418
Subject Category
Behavioral Sciences
Accession Number
95N32422
Funding Number(s)
CONTRACT_GRANT: NGT-44-005-803
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available