NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Unified approach for incompressible flowsA unified approach for solving incompressible flows has been investigated in this study. The numerical CTVD (Centered Total Variation Diminishing) scheme used in this study was successfully developed by Sanders and Li for compressible flows, especially for the high speed. The CTVD scheme possesses better mathematical properties to damp out the spurious oscillations while providing high-order accuracy for high speed flows. It leads us to believe that the CTVD scheme can equally well apply to solve incompressible flows. Because of the mathematical difference between the governing equations for incompressible and compressible flows, the scheme can not directly apply to the incompressible flows. However, if one can modify the continuity equation for incompressible flows by introducing pseudo-compressibility, the governing equations for incompressible flows would have the same mathematical characters as compressible flows. The application of the algorithm to incompressible flows thus becomes feasible. In this study, the governing equations for incompressible flows comprise continuity equation and momentum equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. Thus, the CTVD schemes can be implemented. In addition, the physical and numerical boundary conditions are properly implemented by the characteristic boundary conditions. Accordingly, a CFD code has been developed for this research and is currently under testing. Flow past a circular cylinder was chosen for numerical experiments to determine the accuracy and efficiency of the code. The code has shown some promising results.
Document ID
19950026004
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Chang, Tyne-Hsien
(Texas A&M Univ. Galveston, TX, United States)
Date Acquired
September 6, 2013
Publication Date
July 1, 1995
Publication Information
Publication: NASA. Johnson Space Center, National Aeronautics and Space Administration (NASA)(American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1994, Volume 1 9 p (SEE N95-32418
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
95N32425
Funding Number(s)
CONTRACT_GRANT: NGT-44-005-803
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available