NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Ignition and combustion of bulk metals under elevated, normal and reduced gravity conditionsThis research effort is aimed at providing further insight into this multi-variable dependent phenomena by looking at the effects of gravity on the ignition and combustion behavior of metals. Since spacecraft are subjected to higher-than-1g gravity loads during launch and reentry and to zero-gravity environments while in orbit, the study of ignition and combustion of bulk metals at different gravitational potentials is of great practical concern. From the scientific standpoint, studies conducted under microgravity conditions provide simplified boundary conditions since buoyancy is removed, and make possible the identification of fundamental ignition mechanisms. The effect of microgravity on the combustion of bulk metals has been investigated by Steinberg, et al. on a drop tower simulator. However, no detailed quantitative work has been done on ignition phenomena of bulk metals at lower or higher-than-normal gravitational fields or on the combustion characteristics of metals at elevated gravity. The primary objective of this investigation is the development of an experimental system capable of providing fundamental physical and chemical information on the ignition of bulk metals under different gravity levels. The metals used in the study, iron (Fe), titanium (Ti), zirconium (Zr), magnesium (Mg), zinc (Zn), and copper (Cu) were selected because of their importance as elements of structural metals and their simple chemical composition (pure metals instead of multi-component alloys to avoid complication in morphology and spectroscopic studies). These samples were also chosen to study the two different combustion modes experienced by metals: heterogeneous or surface oxidation, and homogeneous or gas-phase reaction. The experimental approach provides surface temperature profiles, spectroscopic measurements, surface morphology, x-ray spectrometry of metals specimens and their combustion products, and high-speed cinematography of the heating, ignition and combustion stages of the metal specimen. This paper summarizes the results obtained to date from experiments conducted under normal and high-gravity conditions.
Document ID
19960008404
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Abbud-Madrid, Angel
(Colorado Univ. Boulder, CO, United States)
Branch, Melvyn C.
(Colorado Univ. Boulder, CO, United States)
Daily, John W.
(Colorado Univ. Boulder, CO, United States)
Date Acquired
September 6, 2013
Publication Date
August 1, 1995
Publication Information
Publication: NASA. Lewis Research Center, The 3rd International Microgravity Combustion Workshop
Subject Category
Materials Processing
Accession Number
96N15570
Funding Number(s)
CONTRACT_GRANT: NAG3-1257
CONTRACT_GRANT: NAG3-1685
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available